Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE

نویسندگان

  • Ryan E. Mewis
  • Richard A. Green
  • Martin C. R. Cockett
  • Michael J. Cowley
  • Simon B. Duckett
  • Gary G. R. Green
  • Richard O. John
  • Peter J. Rayner
  • David C. Williamson
چکیده

We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iridium(III) Hydrido N-Heterocyclic Carbene–Phosphine Complexes as Catalysts in Magnetization Transfer Reactions

The hyperpolarization (HP) method signal amplification by reversible exchange (SABRE) uses para-hydrogen to sensitize substrate detection by NMR. The catalyst systems [Ir(H)2(IMes)(MeCN)2(R)]BF4 and [Ir(H)2(IMes)(py)2(R)]BF4 [py = pyridine; R = PCy3 or PPh3; IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene], which contain both an electron-donating N-heterocyclic carbene and a phosphine, ...

متن کامل

Extending the Scope of 19F Hyperpolarization through Signal Amplification by Reversible Exchange in MRI and NMR Spectroscopy

Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as 18F-labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using 19F-containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significa...

متن کامل

Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange

Signal Amplification by Reversible Exchange (SABRE) is a fast and convenient NMR hyperpolarization method that uses cheap and readily available para-hydrogen as a hyperpolarization source. SABRE can hyperpolarize protons and heteronuclei. Here we focus on the heteronuclear variant introduced as SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to Heteronuclei) and nitrogen-15 targets in ...

متن کامل

Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE

Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is tech...

متن کامل

15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2015